.. _`Multi-output Classifier`: .. _`org.sysess.sympathy.machinelearning.multioutput_classifier`: Multi-output Classifier ~~~~~~~~~~~~~~~~~~~~~~~ .. image:: multioutput.svg :width: 48 Fits one classifier for each target of outputs. Useful for extending classifiers that do not natively support multiple outputs **Documentation** Fits one classifier for each target of outputs. Useful for extending classifiers that do not natively support multiple outputs *Configuration*: - *n_jobs* The number of jobs to run in parallel. :meth:`fit`, :meth:`predict` and :meth:`partial_fit` (if supported by the passed estimator) will be parallelized for each target. When individual estimators are fast to train or predict, using ``n_jobs > 1`` can result in slower performance due to the parallelism overhead. ``None`` means `1` unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all available processes / threads. See n_jobs for more details. .. versionchanged:: 0.20 `n_jobs` default changed from `1` to `None`. *Attributes*: *Input ports*: **model** : model model *Output ports*: **out-model** : model Output model **Definition** *Input ports* :model: 1 - 1, model model *Output ports* :out-model: model Output model .. automodule:: node_ensemble :noindex: .. class:: MultiOutputClassifier :noindex: